MINERALES 2:1 Y 2:2 EN SUELOS VOLCÁNICOS DE CHILE. 2. Suelos derivados de toba riolítica en la región central

SILVESTRE V. GONZÁLEZ, EDUARDO BENÍTEZ MONASTERIO

SUMMARY

Clay mineralogy of some soils derived from rhyolite tuff in the central zone of Chile was studied comparing with that of volcanic ash soils which have developed in humid and well drained conditions in the south of Chile. Emphasis was given to 2:1 lattice type clay minerals.

Clay fraction of the sampled soils consists essentially of metahalloysite associated with a large amount of amorphous compounds such as glass, amorphous silica, "allophane-like" materials and variable amounts of montmorillonite, vermiculite, muscovite, quartz and albite. Primary minerals—mica, quartz and albite—are concentrated in the coarse fraction of the clay, while amount of metahalloysite, montmorillonite and vermiculite increases with diminution of particle size, indicating the character of secondary minerals. The association of metahalloysite and 2:1 species in the samples suggests that the soils developed under two different climates: the one, warm and humid, favours the formation of metahalloysite, and the other, warm and dry, corresponding to the present climate, has developed 2:1 species.

In contrast to the clay mineralogical composition of the tuffaceous soils, the clay fraction of volcanic ash soils in the south is generally composed of a large amount of allophane and imogolite with a very small amount of 2:1 and 2:2 clay minerals. The proportion of the content of 2:1 minerals to amorphous materials is quite different between both the groups—central tuffaceous soils and southern volcanic ash soils. Another remarkable difference can be seen in amorphous material: amorphous silica and "allophane-like" material in the former and allophane and imogolite in the latter. Climatic condition appears to exert a great influence on the clay mineralogical composition of pyroclastic soils.

INTRODUCCIÓN

En las áreas de sedimentación del valle central y los valles interiores de las provincias de Santiago (Región Metropolitana) y O'Higgins (VI Región), se encuentran las tobas que, bajo las condiciones climáticas adecuadas, han desarrollado sustratos diferentes a los originados de cenizas volcánicas en las regiones centro-sur y sur del país. Ambos grupos de suelos, no obstante, en común contienen un material parental sistémático, morfológico y mineroquímico, así como en la mayoría de sus propiedades.

Existen discrepancias respecto del origen de las tobas. Borde (1966) y Tricart et al. (1965), en base a una falta de clasificación de las cenizas, han sugerido que los depósitos se habrían formado mediante corrientes de barranco originadas por deshielo glaciar y por cenizas riolíticas erupcionadas por volcanes situados dentro de los valles. Seguerstrom et al. (1964) admiten este origen de las tobas, pero estiman que las cenizas debieron producirse en volcanes ubicados en la cordillera. Brüggen
Estudios previos efectuados por otros 4 revelaron que la fracción areolar dada la constancia mineralógica generalizada de las rocas volcánicas en Chile y la constancia de la fracción 2:1 de silicatos de aluminio-filílicas, la fracción 2:1 (metahalita) junto a las clastos de materiales de origen alcalino. La relación mineralógica generalizada de los suelos volcánicos de Chile es la de un perfil 2:1 dominante, con un espesor de materiales alcalinos y un espesor de materiales básicos en las muestras.

MATERIALES Y MÉTODOS
El conjunto 2 contiene antecedentes de edificación, clasificación y caracterización de los suelos volcánicos de Chile.

CUADRO 1
UBICACIÓN, CLASIFICACIÓN Y CARACTERÍSTICAS MINERALÓGICAS DOMINANTES DE CUATRO SUELOS DERIVADOS DE BOLITA PUMÍTICA DE LA REGIÓN CENTRAL DE CHILE
Location, classification and prevailing mineralogical characteristics of four soils derived from pumicite of central region of Chile

<table>
<thead>
<tr>
<th>Suelo</th>
<th>Ubicación</th>
<th>Clasificación</th>
<th>Mineralógica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcalde</td>
<td>3 km al N de Peralillo por camino Peralillo-Río Paredones, Comuna de Peralillo, Depto. de Sta. Cruz, Prov. de Colchagua (VI Región).</td>
<td>Durandept</td>
<td>Dominantemente arenisca con 35% de compuestos epípticos.</td>
</tr>
<tr>
<td>Canelche</td>
<td>2 km al O de Peralillo por camino Peralillo-Río Paredones, Comuna de Peralillo, Depto. de Sta. Cruz, Prov. de Colchagua (VI Región).</td>
<td>Durandept</td>
<td>Dominantemente arenisca con 40% de compuestos epípticos.</td>
</tr>
<tr>
<td>Calpulín</td>
<td>Asentamiento Calpulín, Comuna de Melipilla, Prov. de Santiago (Arau Metropolitana).</td>
<td>Durandept</td>
<td>Dominantemente arenisca con 40% de compuestos epípticos.</td>
</tr>
<tr>
<td>Pudahuel</td>
<td>Camino Pudahuel-Noviembre, 5 km al O de Aeropuerto Internacional Pudahuel, Comuna de Pudahuel, Prov. de Santiago (Arau Metropolitana).</td>
<td>Durandept</td>
<td>Dominantemente arenisca con 35% de compuestos epípticos.</td>
</tr>
</tbody>
</table>

CUADRO 2
ESTIMACIÓN SEMICUANTITATIVA DE LA COMPOSICIÓN DE LA FRACCIÓN AREOLAR DE LOS CUATRO SUELOS DERIVADOS DE POMBE BOLITA ANALIZADOS
Semi-quantitative approach of clay fraction mineralogical composition in the analysed four soils derived from pumicite

<table>
<thead>
<tr>
<th>Diferente</th>
<th>Metaorto</th>
<th>Vermiculita</th>
<th>Mica</th>
<th>Anodito</th>
<th>Metaalcali</th>
<th>Mineral primario</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0,5 mm</td>
<td>asiento</td>
<td>asiento</td>
<td>escaso</td>
<td>común</td>
<td>abundante</td>
<td>traza</td>
</tr>
<tr>
<td>0,5-2 mm</td>
<td>asiento</td>
<td>asiento</td>
<td>escaso</td>
<td>común</td>
<td>abundante</td>
<td>traza</td>
</tr>
<tr>
<td>> 2 mm</td>
<td>asiento</td>
<td>asiento</td>
<td>escaso</td>
<td>común</td>
<td>abundante</td>
<td>traza</td>
</tr>
</tbody>
</table>

5 Datos de ubicación de los suelos Alcalde y Canelche citados del Informe Geológicos de la Provincia de Colchagua, 1979 (publicación preliminar), SAC. Ubicación del suelo Calpulín facilitada por el Dr. Alfredo L. Urrutia del Depto. de Geología de la Universidad de Chile (VI Región). Ubicación del suelo Pudahuel facilitada por el Dr. Gonzalo Martínez de las Halls (VI Región). Ubicación de los suelos Alcalde y Calpulín citados del Informe Geológico de la Provincia de Colchagua, 1979 (publicación preliminar), SAC. Ubicación del suelo Canelche facilitada por el Dr. Alfredo L. Urrutia del Depto. de Geología de la Universidad de Chile (VI Región). Ubicación del suelo Pudahuel facilitada por el Dr. Gonzalo Martínez de las Halls (VI Región). Ubicación de los suelos Alcalde y Calpulín citados del Informe Geológico de la Provincia de Colchagua, 1979 (publicación preliminar), SAC. Ubicación del suelo Canelche facilitada por el Dr. Alfredo L. Urrutia del Depto. de Geología de la Universidad de Chile (VI Región). Ubicación del suelo Pudahuel facilitada por el Dr. Gonzalo Martínez de las Halls (VI Región).
La fracción arcilla del suelo Alhue (figura 1) está constituida, principalmente, por metahalloysita (reflexiones a 7,4A y 3,56A) la que se acumula en la sufracción de arcilla media a fina (< 0,2μm). Pequeñas cantidades de minerales primarios, como níca (9,99 A), y traza de cuarzo (3,34 A) y albita (3,20 A) se encuentran, por el contrario, en la sufracción de arcilla gruesa (2-0,2μm). No se observaron reflexiones en la región de 14 A.

FIGURA 1

DESCRIPTORES DE MUESTRAS DESPERBILIZADAS Y SIN AMORFOS DE LA FRACCIÓN ARCILLA DEL SUELO ALHUE

Allhue clay fractions. Diffractograms of samples, after deferrization and amorphous elimination.

![Diffractogramas de muestras desperbiliizadas y sin amorfos de la fracción arcilla del suelo Alhue](image1)

En el suelo Caluche (figura 2), la fracción arcilla presenta un mayor contenido de minerales primarios, cuarzo (3,34Å), albita (3,20Å) y níca, respecto del suelo Alhue; sin embargo, el mineral dominante continúa siendo la metahalloysita, la que aumenta gradualmente su contenido en la medida que disminuye el diámetro del grano. Se observan reflexiones alrededor de 14Å en la fracción de arcilla media a fina, que identifica a la fractura 3:1 y 2:1, presente en baja concentración.

FIGURA 2

DIFRACTOGRAMAS DE MUESTRAS DESPERBILIZADAS Y SIN AMORFOS DE LA FRACCIÓN ARCILLA DEL SUELO CALUCHE

Caluche clay fractions. Diffractograms of samples, after deferrization and amorphous elimination.

![Diffractogramas de muestras desperbiliizadas y sin amorfos de la fracción arcilla del suelo Caluche](image2)

La desintegración cristalina de los suelos Caluche y Calchín (figuras 3 y 4, respectivamente) es cualitativamente similar a la del suelo Caluche y las diferencias sólo pueden observarse en el rango cuantitativo. Asimismo, mantienen las tendencias de acumulación a minerales según la granulometría de las arcillas.

FIGURA 3

DIFRACTOGRAMAS DE MUESTRAS DESPERBILIZADAS Y SIN AMORFOS DE LA FRACCIÓN ARCILLA DEL SUELO CALCHÍN

Calchín clay fractions. Diffractograms of samples, after deferrization and amorphous elimination.

![Diffractogramas de muestras desperbiliizadas y sin amorfos de la fracción arcilla del suelo Calchín](image3)

DISCUSIÓN

Al comparar las características mineralógicas de la arcilla de los Andosoles con las de los suelos derivados de tierra rocosa, se advierten diferencias agudas motivadas tanto por la textura del material parental como por las condiciones climáticas y las que se han acumulado en estos suelos. En los Andosoles, llama la atención la clavimetría elevada, la presencia de níca, la adición de albita y la adhesiva presencia de la fracción amorfica, determinando que la arcilla esté dominada por compuestos amorfinos.

La verificación de estos suelos a nivel de laboratorio, con formación minerales de feldespatos (Amato et al., 1972; Beutler, 1974; González Martínez et al., 1978; Pizá y Martínez y Benavides, 1975). En los suelos de tierra rocosa, dominada por vitrificados, se observa, principalmente, con escasa permeabilidad por la escasa proporción de la proporción del sustrato y bajo
condiciones climáticas de bajo pluvimetro, la arcilla se encuentra dominada por una asociación cristalina secundaria, cuyos componentes más importantes son la metahalosita, montmorillonita y vermiculita; la mica existente es un mineral primario residual y la generación de alúmina se ha visto, aparentemente, restringida.

En los suelos de toba ríolítica no se detectó clorita, especie que normalmente se encuentra asociada a vermiculita y mica, en los Andes, aunque en proporciones restringidas (Am

FIGURA 4

DIFRACTOGRAMAS DE MUESTRAS DESVIRIFICADAS Y SIN AMOROSOS DE LA FRACCIÓN ARCCILLA DEL SUELO PUDAHUEL.

Pudahuel clay fractions. Difractograms of samples, after alteration and amorphous elimination.

mine et al., 1972, González Martínez y Soain, 1975).

Parece evidente que las condiciones climáticas del depósito ejercen una influencia significativa sobre la evolución mineralógica de las cenizas volcánicas. Ello resalta cuando se comparan minerales afines; recientemente se ha estudiado un depósito de pomez ríolítica situado en el sur de Chile (Ensenada), con una precipitación de 1.000 mm y se encontró que la arcilla está compuesta esencialmente por alúmina e inorgánica, con una pequeña proporción de clorita.

Las variaciones mineralógicas entre los niveles y los suelos de este estudio están manifestadas en relación a su grano fino. En las fracciones más finas de la arcilla, los suelos de toba ríolítica se caracterizan por la metahalosita y la mica, los minerales de espín (basal 014), en tanto que los minerales de arcilla se localizan en las fracciones gruesas. Debido a este comportamiento, se ha notado que la mica corresponde a un mineral primario residual, al paso que la metahalosita a un depósito de alúmina, vermiculita y metahalosita resultantes de la transformación de las arcillas clásticas, productos de nectología. La alteración de las arcillas, al depósito y otros, producida el ion Mg²⁺, indispensables para la formación de los clastos minerales del tipo 2:1. Seguidores de esta idea, se observa que esta alteración es favorecida por la formación de minerales ferromagnetizantes, de metahalosita al depósito de la mica.

La mica, al depósito y otros, se observa que esta mica puede ser rechazada de manera general, y también el clorita de metahalosita, generalmente presente, no se encuentra entre los minerales alterados, aunque se note una formación de framboides, cuyas dimensiones son mayores y se observan, en algunas muestras, por formación de arcos ríolíticos y depósitos de clorita.

Algunas ideas formuladas por Bauxo (1974) sobre la modelización de las cenizas volcánicas adentro-basálticos en ambiente de arcilla, son susceptibles de extrapolación a los suelos derivados de toba ríolítica en ambiente climático, y puede ser observado en el cuadro 3, donde se han tomado en cuenta, a pesar del esquema propuesto en el marco de arcilla, el comportamiento de los minerales ferromagnetizantes a la formación de las minerales de arcilla.

CUADRO 3

ESQUEMA DE FORMACIÓN DE METAHALOSITA, MONTMORILLONITA Y VERMICULITA A PARTIR DE MINERALES FERROMAGNETIZANTES, MICA, VIDRIOS VOLCÁNICOS Y PLAGIOCLASAS.

<table>
<thead>
<tr>
<th>Ferrohidróxido</th>
<th>+H₂O</th>
<th>coloides: silicas y aluminas</th>
<th>(fase hidratada)</th>
<th>-H₂O</th>
<th>metahalosita</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICA</td>
<td>-K+</td>
<td>hidróxido</td>
<td>hidróxido</td>
<td>+H₂O</td>
<td>metahalosita</td>
</tr>
<tr>
<td>FERROMAGNETIZANTES</td>
<td>-</td>
<td>formación de mica</td>
<td>formación de mica</td>
<td>+H₂O</td>
<td>metahalosita</td>
</tr>
<tr>
<td>VESICULAR</td>
<td>+H₂O</td>
<td>formación de mica</td>
<td>formación de mica</td>
<td>+H₂O</td>
<td>metahalosita</td>
</tr>
</tbody>
</table>

Fuentes: Calmo, Diego, Comunicación personal, 1974.
RESUMEN

Se estudió la composición mineralógica de la arcilla en algunos suelos de toba rústica de la región central de Chile, con énfasis en los mini-

Los materiales primarios —mica, cuarzo y albite— se concentran en la fracción de arcilla gruesa (2-0,2 ㎛). El contenido de metahalita, metaklinóilita y vermiculita aumenta con la dominación del diámetro del grano, eviden-

La asociación de especies 1 y 2 en la arcilla sugiere que los suelos de toba rústica se han desarrollado, probablemente, a través de dos fases:

1. Homo, que favoreció la formación de metahalita, y

2. Flora, correspondiente a la fase actual, que ha generado las especies 2 y 1.

Es indudable que la formación de metahalita puede haberse visto favo-

Ese clima ejerce una acción decisiva sobre la evolución de los suelos a partir de cenizas volcánicas, ácidos o básicas. Se conoce que cenizas rústicas, bajo ambientes húmedos y con dréanaje libre, han generado suelos con predominio de formas amorfas, aldehídu e imogolita, en su fracción arcilla.

LITERATURA CITADA

Aguirre, S.; A. Duque y C. Menteja, 1972. Inm-

Brewer, M. E., 1974. Consideraciones generales so-

Breton, J., 1966. Les Andes de Santiago et leur avant-pays, étude de geomorphologie. Thèse Ph. D., Bordeaux, Université de Bordeaux.

Bulcao, J., 1958. Fundamentos de la geología de Chile. Instituto Geográfico Militar, Santiago de Chile.

González Martínez, S. P. y E. Breton M., 1972. Mi-

González Martínez, S. P., J. Uribe y R. Breton M., 1972. Secuencia de metareconstrucción y su rela-

LUCAS, T. J., C. CAMER and G. MILLOUT, 1957. De-

MORA, D. P. and M. L. JACKSON, 1991. Ge-

SINJY, S. and J. Matsu, 1969. Anemorphic clay mi-

